Welcome to the CSI-4CAST organization on Hugging Face! This organization hosts datasets for CSI prediction research. This dataset is originally created for our research paper: CSI-4CAST: A Hybrid Deep Learning Model for CSI Prediction with Comprehensive Robustness and Generalization Testing. The corresponding code and implementation are available in our GitHub repo.
Quick Start Options:
snapshot_download command to download individual datasets you needdownload.py followed by reconstruction.py to get the complete, well-structured datasetSee the Usage section below for detailed instructions.
The datasets are organized in the following structure:
data/
├── stats/
│ ├── fdd/
│ │ └── normalization_stats.pkl
│ └── tdd/
│ └── normalization_stats.pkl
├── test/
│ ├── generalization/
│ │ ├── cm_A_ds_030_ms_001/
│ │ │ ├── H_D_pred.pt
│ │ │ ├── H_U_hist.pt
│ │ │ └── H_U_pred.pt
│ │ ├── cm_B_ds_030_ms_001/
│ │ ├── cm_C_ds_030_ms_001/
│ │ ├── cm_D_ds_030_ms_001/
│ │ ├── cm_E_ds_030_ms_001/
│ │ └── ...
│ └── regular/
│ ├── cm_A_ds_030_ms_001/
│ │ ├── H_D_pred.pt
│ │ ├── H_U_hist.pt
│ │ └── H_U_pred.pt
│ ├── cm_C_ds_030_ms_001/
│ ├── cm_D_ds_030_ms_001/
│ └── ...
└── train/
└── regular/
├── cm_A_ds_030_ms_001/
│ ├── H_D_pred.pt
│ ├── H_U_hist.pt
│ └── H_U_pred.pt
├── cm_C_ds_030_ms_001/
├── cm_D_ds_030_ms_001/
└── ...
Our datasets are organized using a convenience-first naming strategy on Hugging Face. Instead of uploading the entire data folder as one large dataset, we've split it into individual datasets with descriptive names. This approach allows users to:
The datasets follow this naming pattern:
[train/test]_[regular/generalization]_cm_[A/B/C/D/E]: Dataset type and channel modelcm_[A/B/C/D/E]: Channel models CDL-A, CDL-B, CDL-C, CDL-D, CDL-Eds_[030/050/100/200/300/400]: Delay spreads with values in nsms_[001/003/006/009/010/012/015/018/021/024/027/030/033/036/039/042/045]: User speed with values in m/sExamples:
test_regular_cm_A_ds_030_ms_001: Regular test data for CDL-A model, 30ns delay spread, 1 m/s speedtrain_regular_cm_C_ds_100_ms_030: Training data for CDL-C model, 100ns delay spread, 30 m/s speedtest_generalization_cm_B_ds_200_ms_015: Generalization test data for CDL-B model, 200ns delay spread, 15 m/s speedYou can download individual datasets using the Hugging Face Hub:
from huggingface_hub import snapshot_download
# Download the stats dataset
snapshot_download(repo_id="CSI-4CAST/stats", repo_type="dataset")
# Download a specific CSI prediction dataset
snapshot_download(repo_id="CSI-4CAST/test_regular_cm_A_ds_030_ms_001", repo_type="dataset")
To download all available datasets at once, use the provided download.py script:
# Download all datasets to a 'datasets' folder
python3 download.py
# Download to a custom directory
python3 download.py --output-dir my_datasets
# Dry run to test without downloading (creates empty placeholder files)
python3 download.py --dry-run
The script will automatically:
While our naming strategy makes it easy to download specific datasets, you might want to work with the complete dataset in its original folder structure. For this purpose, we provide the reconstruction.py script that restores the original organization:
python3 reconstruction.py --input-dir datasets --output-dir data
This script will:
When to use reconstruction:
Note: Reconstruction is only necessary if you need to replicate the CSI-4CAST paper's results exactly. If you're working with individual datasets or don't need the specific folder structure, you can skip reconstruction and work directly with the downloaded datasets.
Each dataset folder contains:
H_D_pred.pt: Predicted H_D values (PyTorch tensor)H_U_hist.pt: Historical H_U values (PyTorch tensor) H_U_pred.pt: Predicted H_U values (PyTorch tensor)For further questions or any contribution suggestions, you can create pull requests here or to the GitHub homepage of this organization.
@misc{cheng2025csi4casthybriddeeplearning,
title={CSI-4CAST: A Hybrid Deep Learning Model for CSI Prediction with Comprehensive Robustness and Generalization Testing},
author={Sikai Cheng and Reza Zandehshahvar and Haoruo Zhao and Daniel A. Garcia-Ulloa and Alejandro Villena-Rodriguez and Carles Navarro Manchón and Pascal Van Hentenryck},
year={2025},
eprint={2510.12996},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2510.12996},
}